
JOT: A Modular Multi-purpose Minimalistic Massively
Multiplayer Online Game Engine

Gonçalo N. P. Amador
Instituto de Telecomunicações

Covilhã, Portugal
g.n.p.amador@gmail.com

Abel J. P. Gomes
Universidade da Beira Interior

Covilhã, Portugal
agomes@di.ubi.pt

ABSTRACT
Most game engines are developed by and to the game industry.
They are normally monolithic, i.e., typically grown out of a spe-
cific game, tendentiously gender specific, whose components
(e.g., physics sub-engine) cannot be considered as separate
modules, i.e., their functionalities are not clearly separated
from each other. Consequently, there is a lack of modular,
well documented, open source frameworks for games. In this
paper, we present JOT, a minimal, modular game engine for
Massively Multi-player Online Games (MMOGs); recall that
‘jot’ means minimal thing.

Author Keywords
Game Engine; Educational Software Tools; MMOGs.

INTRODUCTION
In game industry, game engines are used to produce games.
Their goal is to reduce game development time through a col-
laborative process between programmers and artists. Game
engines allow that both programmers and artists work sepa-
rately or simultaneously in a given project. Historically, game
engines evolved into two major variants, namely: monolithic
and modular. Monolithic game engines evolved from specific
games in order to allow content and behavior changes, via
scripting (e.g., Unreal Engine [30]). Modular game engines
are a set of tools for either game gender that, in theory, give
freedom to alter the source code or replace or modify its core
components (e.g., render sub-engine, physics sub-engine, AI
sub-engine, etc.). Other engines (e.g., Unity3D [6]), built
for multi-cross platform purposes, are in fact game engines
to built monolithic game engines [21]. Regardless, former
core sub-engines can not be replaced; instead, they can be

Videojogos’16, Nov 24–25, 2016, Covilhã, Portugal

Frutuoso Silva e Pedro Santos (eds.) ISBN 978-989-20-7148-0.

extended with new features, i.e., they are partially modular
game engines [21]. The main contribution of this paper is JOT,
a modular game engine for research and teaching of game
engine technologies and MMOGs [1].

The remain of this paper is organized as follows. Section 2
overviews game engines. Section 3 briefly describes JOT archi-
tecture. Section 4 details JOT infrastructure layer. Section 5
details JOT core layer. Section 6 details JOT toolkits layer.
Section 7 details JOT framework layer. Finally, Section 8
draws relevant conclusions and points out new directions for
future work.

GAME ENGINES OVERVIEW

Game Engines: the Past
The first game engines appeared in the 1980’s (e.g., ASCII’s
RPG Maker [11]), in particular for 2D games. In the 1990’s,
with the launch of general purpose application programming
interface (APIs), for rendering 2D and 3D vector graphics (i.e.,
OpenGL and DirectX), game developers began using higher
level languages. More specifically, in the 1993, id Software
"Doom engine" became the first commercially available 3D
game engine [4, 26]. It was the first engine to structure the
components of computer games (e.g., rendering, A.I., physics,
networking, etc.). This allows for using the same game engine
to develop other games with other contents. Regardless, until
the end of the 1990’s game engines where mostly focused on
a specific game genre (e.g., First-Person Shooters (FPS)) [4,
26].

After 2000, game engines development went in various direc-
tions, namely:

1. Multiple game genders and platforms, e.g., Unity3D [6].

2. Mobile devices, e.g., wGEM [28], M3GE [15], mOGE [19],
etc.

3. Teaching/studying game technologies, e.g., Gedi [8], Min-
ueto [9], enJine [23], Mammoth [17], etc.

57



4. Design of novel game engines from scratch with arguably
novel architectures, e.g., CryEngine [22] or Amazon Lum-
beryard.

5. Porting of game engines components (e.g., render module)
functionalities into the GPU, e.g., via shader languages [18].

Game Engines: the Present
At the present, game engines are in their vast majority complex
tools, often permitting to recode portions of the engine core
or the modify it via a general (e.g., Lua) or specific (e.g., Un-
realScripting) scripting language. Some game engines strive
for being suited for multiple genders and multiple platforms,
e.g., Unity3D [6]. Note that many game engines developed
in academia for a specific field of study are either no longer
open source [13, 23, 3, 7, 16, 17] or abandoned [9]. Neverthe-
less, open source game engines are to complex or not enough
modular, so that the removal or rewriting of its components in
a difficult task. But, recall that most major game companies
use proprietary game engines.

Game Engines: the Future
We have identified five major future research trends in the
development of game engines, namely:

1. The replacement of traditional raster-based renderers by ray
tracing-based renderers [31]. In the render module of game
engines and other graphical applications, ray casting (i.e.,
a particular ray tracer limited to primary rays) has been
used in game development for many years [12], mainly for
collision detection. This is so because because it is already
feasible to run a ray tracer in real-time for no so much com-
plex 3D scenes using shader programming or more general
programming like CUDA or OpenCL, so that the expecta-
tions are to have ray tracers with real-time performance in
the near future [25].

2. The introduction of voxelized scenes for scene management,
including physics and complex terrains. This particularly
useful for handling terrain features like caves or overhangs,
as well as destructive war scenarios with falling off build-
ings and the like.

3. The development of automated procedural generation al-
gorithms. One of the major problems of current games is
the construction of scenarios for game levels, though most
game engines include scene editors. In the future, we will
see automated generation of 3D scenes from a a descrip-
tive specification in order to shorten the process of game
prototyping and development.

4. GPU-centric game engines. At present, most parallel fea-
tures of game engines are provided by shaders, particularly
for illumination purposes, though some efforts were made
to integrate commercial games with NVidia CUDA (e.g.,
Mirror’s Edge [24]). Therefore, in the future, we will assist
to the development of the game engines that fully leverage
the processing power of GPUs.

5. The emergence of really modular game engines. Nowadays,
most game engines do not permit the replacement of a game
core component easily. In fact, there is no known game

engine or framework that allows for the replacement of any
sub-engine (e.g., physics, A.I., networking, etc.) by another
one; for example, it is not possible to replace a physics
sub-engine (e.g., Havok) by another one (e.g., Bullet) in
a straightforward manner. It is clear that this would be
feasible if there was a common interoperability framework
for physics sub-engines.

JOT architecture takes into consideration the former aspects
to attempt to ensure modularity and future extensibility.

JOT ARCHITECTURE
JOT is built in Java programming language for several reasons,
namely:

1. The Java Virtual Machine (JVM) is multiplatform.

2. There are considerable third-party Java application layer
multicast implementations (e.g., JGroups) and cloud/grid
middlewares (e.g., GridGain).

3. There is a significant base of game engines for teaching
computer graphics courses and/or studying game technolo-
gies in Java, e.g., M3GE [15], Minueto [9], enJine [23],
Mammoth [17], etc.

4. There are open source game engines in Java that serve as
a base for design decisions and performance testing, e.g.,
jMonkeyEngine and Jake2, an open source port to Java of
Quake II.

JOT gathers many concepts of other game engines developed
in academia. First, it has a layer structure similar to that
one of RAGE [20]. Second, it uses concepts implemented
in M3GE and jMonkeyEngine scene management, i.e., its
classes and methods are similar to those found in M3GE and
jMonkeyEngine. Third, the organization of toolkits of JOT is
strongly influenced by Mammoth; e.g., JOT artificial intelli-
gence toolkit uses a similar design as Mammoth AI module.
JOT is a four-layer game engine, from bottom to top: In-
frastructure, Core, Toolkits, and Framework, as illustrated in
Fig. 1.

As observed in Fig. 1, dashed rounded corner rectangles are ex-
ternal libraries, e.g., JOGL. Any layer component that resorts
to an external library obeys to interface/abstract classes as ex-
pected by above layers, e.g., if we replace JGroups with Orbit,
solely the Network Toolkit must be re-implemented obeying
to the same interface/abstract classes, without any changes
required in other toolkits or layers. Each layer constituents
can only use functionalities of the same layer or lower layers
constituents, e.g., the Artificial Intelligence Toolkit relies on
the Geometry Extended Toolkit, on the Core layer, and on the
Infrastructure layer. In order to replace a component in the
engine, one might solely adapt the respective toolkit or addi-
tionally modify its lower layers, e.g., to replace JOT physics
code with a physics engine one must implement classes that
obey to the provided interface/abstract classes in the Physics
Extended Toolkit and, if desired, in physics Core layer. This
implies that modularity of the game engine is ensured at the
expense of possible redundancy or unused source code in the
Core layer.

58

https://aws.amazon.com/lumberyard/
https://aws.amazon.com/lumberyard/
http://www.jgroups.org/
http://www.gridgain.com/
http://jmonkeyengine.org/
http://bytonic.de/html/jake2.html
https://github.com/orbit/orbit/wiki


Figure 1. JOT layers.

INFRASTRUCTURE LAYER
This layer is comprised of five libraries: The Apache Commons
Mathematics Library, JOGL, JOCL, JOAL, and GLUEGEN,
with the latter four wrapped in JogAmp. Note that JogAmp
provides the graphical pipeline, sound, and OpenCL support.
Presently, JOT uses JOGL for the graphical pipeline (OpenGL)
and for 2D/3D sound support (OpenAL). Recall that there is
not a Java binding for DirectX. The Apache Commons Mathe-
matics Library is an extensible math library for general pur-
pose scientific use, chosen by its extensive features and contin-
uous support/development, in detriment of Java3D Vecmath,
used for example in jMonkeyEngine. However, many of the
The Apache Commons Mathematics Library functionalities are
implemented for doubles and not for floats, thus some upper
layers of JOT re-implement some of its functionalities for sin-
gle precision floating-point numbers instead. More libraries,
namely, OpenCV for camera or control devices, such as the
WiiMote, might also be added in this layer.

CORE LAYER
Core is the minimal set of tools that can allow the classification
of a piece of software as a game engine, i.e., games can be
written on the top of the Core layer, with the assumption that
we have the infrastructure layer underneath. The Core layer is
comprised of five modules, as detailed below.

GUI Module
This module regards a simple game graphical application with
the following functionalities: initialize the game, i.e., load
the menus/controls devices and show startup info; load all
default game content, i.e., player, obstacles, SkyBox, and
floor; running the game main thread; shutdown the game,
clean up code that runs only once; the loop that runs until the
game ends, that continuously and as many times as possible

per second processes the input handlers events, update the
state and position of all the game objects, detect collisions
and provide responses, and refreshes the display. Some of this
module abstract single class SimpleGame.java methods are
guidelines (abstract methods) to be implemented in a game
project, i.e., an game main class extends this class.

Math Extended Module
This module is built upon The Apache Commons Mathematics
Library. It regards geometry in a graphical scene. It contains
shape class and its subclasses for triangles, planes, and spheres,
which are the constituents of a mesh class. Note that each
mesh object (and its bounding volume(s)) can be associated
to a transform group for scene modeling purposes, as usual in
scene graphs. Implemented bounding volumes are dynamic
axis aligned bounding box (AABB), object aligned bounding
box (OBB), and bounding sphere. A dynamic AABB changes
size depending on the mesh rotation to ensure that all mesh
vertices are within the AABB. Obviously, the abstract classes
for shapes and bounding volumes are written to accommodate
new subclasses for specific shapes and bounding volumes,
i.e., they can be extended. Also, this module implements
single and double precision real numbers, linear and cubic
interpolation, and geometric intersection algorithms, as needed
in collision detection, though only the Gilbert-Johnson-Keerthi
(GJK) distance algorithm has been implemented [14].

I/O Module
This module is where the 2D/3D sound, scripting engine, con-
trol devices, and geometric loaders are implemented. The
geometric loaders currently support the Collada 1.4.1 format
(i.e., geometry and material data), but Wavefront OBJ and
MD2 quake 2 files formats are not fully supported. The sound
is managed by an handler for 2D/3D sound, which was im-
plemented on top of OpenAL. The scripting engine serves the
purpose of loading configuration options in the Util module
(more specifically, inCoreOptions class), though this scripting
engine might be extended to incorporate other functionalities.
Note that the I/O module is designed in order to be extended
with classes or libraries to interpret scripting languages (e.g.,
Lua or Phyton), and other control devices aside mouse or
keyboard, such as WiiMote or Kinnect. The control devices
classes implement one or two interfaces, namely:

1. Input is the interface for all control devices that do not
require their positions to be tracked, e.g., keyboard, joystick,
steering wheel, WebCam, Kinect, etc.

2. TrackableInput is the interface for all control devices that re-
quire tracking of their positions or acceleration, e.g., mouse,
Wiimote, etc.

These two interfaces require the registration of user-interaction
events, e.g., a key or button is pressed in a specific position.
This is achieved using the isDetecting or isContinuouslyDe-
tecting methods. Trackable controls are those that have gyro-
scopes and/or accelerometers.

59

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
https://jogamp.org/
https://github.com/hharrison/vecmath


Physics Module
The physics module consists of the following inter-
faces/classes: material (for objects), ray (of light), intersec-
tionResult (between ray and objects). Note that the mesh class
has a list of materials. The ray and intersectionResult classes
are for upper layer support for ray casting [31] or ray tracing
[12] implementations.

Utils Module
This module specifies the options (boolean values) of the
core, and implements a generic class called CoreGameOb-
ject. The GameObject class is an extension to the abstract
class CoreGameObject, which in turn extends the Transform-
Group class. A GameObject is the most generic type of game
object, no matter the the game gender; this class includes not
only data concerning geometry and materials, but also data
related with speed, maximum speed, attributes, and so on.

TOOLKITS LAYER
This layer includes toolkits, which are extensions to the core.
There are toolkits for a number of purposes, namely artificial
intelligence (AI), geometry generators, physics simulation, etc.
Each toolkit includes an Utils component which specifies its
options (boolean values).

Geometry Extended Toolkit
This toolkit extends the features of core geometry module,
with: terrain generators, via fractal or Brownian motion noise
generators; terrain smoothing algorithms, via parametric sur-
faces or Gaussian blur/smooth; maze generation, using Prim’s
algorithm; quadrics, SkyDome, and roughly spherical celestial
objects (planets, moons, and stars).

Physics Extended Toolkit
This toolkit provides several new features to the core physics,
namely: collision handling among rigid (either moving or
not) bodies; kinematics for moving bodies and for projectiles;
particle system effects, for explosions and 2D fluids; Euler 2D
fluids; hybrid (Euler and particle fluid physics) or procedural
rain ripply effects. As a margin note, work is undergoing to
extend all these 2D physics effects to 3D.

Artificial Intelligence (AI) Toolkit
The AI Toolkit supports steering behaviors [29], where each be-
havior implements a common steering behavior interface. The
implemented steering behaviors are, seek, pursuit, flee, evade,
arrive, collision avoidance, interpose, wander, path following,
offset pursuit, and flocking behavior. It also supports pathfind-
ing algorithms, where each pathfinder implements a pathfinder
interface. The implemented pathfinders include Dijkstra’s al-
gorithm [10], A* [2], Fringe search [5], and Best-First search
[27].

Network Toolkit
This toolkit implements the generic network communication
of JOT. It implements an interface that serves to abstract
communication using any networking API (e.g., JGroups and
GridGain), regardless of its network topology. Therefore, if
the networking API was replaced by another for some reason,
game implementations that resort to this toolkit will still work.

FRAMEWORK LAYER
This is the upper layer of JOT. This layer comprises three
modules: GUI, managers, and Util Extended. This layer aims
at the following: first, to provide management of the applica-
tion/game state and scene; second, to separate the game logic
from its graphical application. As a margin note, a partially
implemented off-line ray-tracer is integrated within this layer.

GUI Extended Module
This module provides the following classes: FramePerSecond,
Game (an abstract class that every single game must extend),
and Camera (another abstract class). This latter class has the
following sub-classes: FirstPerson for first-person shooters,
ThirdPerson for role-playing games, and StaticPerspective,
TrackingGameObjectPerspective, StaticUpperView and Track-
ingGameObjectUpperView for strategy games.

Manager Module
This module is responsible for scene, state, and AI managers
are implemented. The scene manager deals with handling of
the scene via a tree-based scene graph, permits the usage of
planar or shadow volume-based shadows, and handles colli-
sions among objects within the scene graph. The state manager
handles game state, i.e., information of each game object (e.g.,
life, speed, etc.), no matter we are using a client-server net-
work topology or a peer-to-peer network topology; which is
particularly useful for massively multiplayer online games
(MMOGs). Finally, there are two AI managers: the first for
steering behaviors and the second for path-finding.

Util Extended Module
This module implements a specification of options (boolean
values) of the Framework layer for usage in the game applica-
tion/implementation.

CONCLUSIONS AND FUTURE WORK
JOT current architecture is satisfactory in proposed features
and modularity. However, JOT still lacks several features and
improvements to existent features, namely:

1. Extend the I/O module, to fully support Wavefront OBJ and
MD2 quake 2 files format, and Collada 1.4.1 or 1.5 skeleton
animation.

2. Extend the Euler and particle fluids to 3D.

3. Replace JOT toolkits with third-party solutions, e.g., replace
the physics extended toolkit with the JBullet physics engine.

4. Improve JOT in order to make it a common interoperabil-
ity framework or interface among the many game related
middlewares for many tasks, physics and render to name a
few.

5. Paralellize JOT in order to make it a general purpose par-
allel game engine, using OpenCL. To be clear, we do not
refer solely to using shaders mostly for illumination effect
and/or render. Instead the idea it to run most of the game
engine features inside the graphics card, e.g., a Ray Caster
[12], e.g., for collision detection, and a Ray Tracer [31] for
rendering of the game.

60

http://jmonkeyengine.org/


6. Improve JOT in order to make it a common interoperabil-
ity framework or interface among the many game related
middlewares for many tasks, physics and render to name a
few.

7. Support JOT with cloud technologies, i.e., make it able to
be used by multiple worldwide distributed game developers.

8. Allow games to be rendered either directly on the browser
or as an application.

9. Modify JOT in order to allow it to be used in the creation
of mobile applications for Android.

As priorly stated a few of these improvements are already
undergoing work.

ACKNOWLEDGMENTS
This research has been partially supported by the Portuguese
Research Council (Fundação para a Ciência e Tecnologia),
under the doctoral Grant SFHR/BD/86533/2012, and also by
FCT Project UID/EEA/50008/2013.

REFERENCES
1. G. Amador and A. Gomes. 2016. A Video Games

Technologies Course: Teaching, Learning, and Research.
In EG 2016 - Education Papers. The Eurographics
Association.

2. A. Bagchi and A. Mahanti. 1983. Search Algorithms
Under Different Kinds of Heuristics–A Comparative
Study. J. ACM 30, 1 (1983), 1–21.

3. J. Bernardes, R. Nakamura, D. Calife, D. Tokunaga, and
R. Tori. 2009. Integrating the Wii Controller with enJine:
3D Interfaces Extending the Frontiers of a Didactic Game
Engine. Computers in Entertainment (CIE) 7, 1 (2009),
1–19.

4. L. Bishop, D. Eberly, T. Whitted, M. Finch, and M.
Shantz. 1998. Designing a PC Game Engine. IEEE
Computer Graphics and Applications 18, 1 (1998),
46–53.

5. Y. Björnsson, M. Enzenberger, R. Holte, and J. Schaeffer.
2005. Fringe Search: Beating A* at Pathfinding on Game
Maps. In Proceedings of the 2005 IEEE Symposium on
Computational Intelligence and Games (CIG ’05), Essex
University, Colchester, Essex, UK, 4-6 April, 2005. IEEE
Computer Society.

6. S. Blackman. 2011. Beginning 3D Game Development
with Unity: All-in-one, Multi-platform Game
Development (1st ed.). Apress, Berkely, CA, USA.

7. Jean-Sébastien Boulanger. 2006. Interest Management
For Massively Multiplayer Games. Master’s thesis.
School Of Computer Science, McGill University,
Montréal, Canada.

8. R. Coleman, S. Roebke, and L. Grayson. 2005. Gedi: a
game engine for teaching videogame design and
programming. Journal of Computing Sciences in Colleges
21, 2 (2005), 72–82.

9. A. Denault. 2005. Minueto, an Undergraduate Teaching
Development Framework. Master’s thesis. School Of
Computer Science, McGill University, Montréal, Canada.

10. E. Dijkstra. 1959. A Note on Two Problems in Connexion
with Graphs. NUMERISCHE MATHEMATIK 1, 1 (1959),
269–271.

11. M. Duggan. 2011. RPG Maker for Teens (1st ed.). Course
Technology Press, Boston, MA, United States.

12. J. Ellis, G. Kedem, T. Lyerly, D. Thielman, R. Marisa, J.
Menon, and H. Voelcker. 1991. The Ray Casting Engine
and Ray Representatives. In Proceedings of the First
ACM Symposium on Solid Modeling Foundations and
CAD/CAM Applications (SMA ’91). ACM Press,
255–267.

13. L. Emmerich, D. Tanaka, R. Petriche, F. Kamakura, and J.
Bernardes. 2006. Building the Network Module for a
Didactic Game Engine. (2006).

14. E. Gilbert, D. Johnson, and S. Keerthi. 1988. A fast
procedure for computing the distance between complex
objects in three-dimensional space. IEEE Journal of
Robotics and Automation 4, 2 (1988), 193–203.

15. P. Gomes and V. Pamplona. 2005. M3GE: um motor de
jogos 3D para dispositivos móveis com suporte a Mobile
3D Graphics API. In Proceedings of the IV Brazilian
Symposium on Computer Games and Electronic
Entertainment. Sociedade Brasileira de Computação
(SBC), 55–65.

16. M. Hawker. 2008. Subgames in massively multiplayer
online games. Master’s thesis. School Of Computer
Science, McGill University, Montréal, Canada.

17. J. Kienzle, C. Verbrugge, B. Kemme, A. Denault, and M.
Hawker. 2009. Mammoth: a massively multiplayer game
research framework. In Proceedings of the 4th
International Conference on Foundations of Digital
Games (FDG ’09). ACM Press, 308–315.

18. A. Lefohn, M. Houston, J. Andersson, U. Assarsson, C.
Everitt, K. Fatahalian, T. Foley, J. Hensley, P. Lalonde,
and D. Luebke. 2009. Beyond Programmable Shading
(Parts I and II). In ACM SIGGRAPH 2009 Courses. ACM
Press, 1–312.

19. I. Macêdo, Jr. 2005. mOGE - mObile Graphics Engine: O
projeto de um motor gráfico 3d para a criação de jogos
em dispositivos móveis. Final report. Universidade
Federal de Pernambuco (UFPE), Pernambuco, Brazil.

20. L. McCulloch, A. Hofman, J. Tulip, and M. Antolovich.
2005. RAGE: A Multiplatform Game Engine. In
Proceedings of the Second Australasian Conference on
Interactive Entertainment (IE ’05). Creativity &
Cognition Studios Press, 129–131.

21. F. Messaoudi, G. Simon, and A. Ksentini. 2015.
Dissecting Games Engines: The Case of Unity3D. In
Proceedings of the 2015 International Workshop on
Network and Systems Support for Games (NetGames ’15).
IEEE Press, 4:1–4:6.

61



22. M. Mittring. 2007. Finding Next Gen: CryEngine 2. In
ACM SIGGRAPH 2007 Courses. ACM Press, 97–121.

23. R. Nakamura, L. Bernardes, and R. Tori. 2006. enJine:
Architecture and application of an open-source didactic
game engine. In Proceedings of the Digital V Brazilian
Symposium on Computer Games and Digital
Entertainment (SBGAMES’2006).

24. J. Norton, C. Wingrave, and J. LaViola, Jr. 2010.
Exploring Strategies and Guidelines for Developing Full
Body Video Game Interfaces. In Proceedings of the Fifth
International Conference on the Foundations of Digital
Games (FDG ’10). ACM Press, 155–162.

25. S. Parker, H. Friedrich, D. Luebke, K. Morley, J. Bigler,
J. Hoberock, D. McAllister, A. Robison, A. Dietrich, G.
Humphreys, M. McGuire, and M. Stich. 2013. GPU Ray
Tracing. Commun. ACM 56, 5 (2013), 93–101.

26. P. Paul, S. Goon, and A. Bhattacharya. 2012. HISTORY
AND COMPARATIVE STUDY OF MODERN GAME

ENGINES. International Journal of Advanced Computer
and Mathematical Sciences 3, 2 (2012), 245–249.

27. J. Pearl. 1984. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

28. A. Pessoa, G. Ramalho, and A. Battaiola. 2002. wGEM :
Um Framework de Desenvolvimento de Jogos para
Dispositivos Móveis. In Proceedings of the XXIX
Seminário Integrado de Software e Hardware. Sociedade
Brasileira de Computação (SBC).

29. C. Reynolds. 1999. Steering Behaviors For Autonomous
Characters. (1999). Retrieved September 16, 2016 from
http://www.red3d.com/cwr/papers/1999/gdc99steer.pdf.

30. L. Surhone, M. Tennoe, and S. Henssonow. 2010.
UnrealScript. Betascript Publishing, Mauritius.

31. T. Whitted. 1980. An Improved Illumination Model for
Shaded Display. Commun. ACM 23, 6 (1980), 343–349.

62

http://www.red3d.com/cwr/papers/1999/gdc99steer.pdf

	Introduction
	Game Engines Overview
	Game Engines: the Past
	Game Engines: the Present
	Game Engines: the Future

	JOT Architecture
	Infrastructure Layer
	Core Layer
	GUI Module
	Math Extended Module
	I/O Module
	Physics Module
	Utils Module

	Toolkits Layer
	Geometry Extended Toolkit
	Physics Extended Toolkit
	Artificial Intelligence (AI) Toolkit
	Network Toolkit

	Framework Layer
	GUI Extended Module
	Manager Module
	Util Extended Module

	Conclusions and Future Work
	Acknowledgments
	References 

